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Abstract 

Debate over the late Quaternary megafaunal extinctions has focussed on whether human colonisation or climatic 

changes were more important drivers of extinction, with few extinctions being unambiguously attributable to 

either. Most analyses have been geographically or taxonomically restricted and the few quantitative global 

analyses have been limited by coarse temporal resolution or overly simplified climate reconstructions or proxies. 

We present a global analysis of the causes of these extinctions which uses high-resolution climate 

reconstructions and explicitly investigates the sensitivity of our results to uncertainty in the palaeological record. 

Our results show that human colonisation was the dominant driver of megafaunal extinction across the world 

but that climatic factors were also important. We identify the geographic regions where future research is likely 

to have the most impact, with our models reliably predicting extinctions across most of the world, with the 

notable exception of mainland Asia where we fail to explain the apparently low rate of extinction found in in the 

fossil record. Our results are highly robust to uncertainties in the palaeological record, and our main conclusions 

are unlikely to change qualitatively following minor improvements or changes in the dates of extinctions and 

human colonisation.  
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Introduction 

Our world has lost most of the large terrestrial animals present 100k years ago (Barnosky et al. 2004). Although 

their extinctions occurred over a remarkably short period of geological time (Martin and Wright 1967; Martin 

and Klein 1984; MacPhee 1999), they were asynchronous across the globe (Barnosky et al. 2004). There has 

been little ecological replacement of these megafauna, resulting in vacant ecological niches and physiological 

anachronisms in surviving animals (Lindstedt et al. 1991) and plants (Guimarães et al. 2008; Johnson 2009). ). 

Parallel extinctions are not seen in small animals, plants and the marine realm (Koch and Barnosky 2006), 

indicating a high degree of selectivity, further narrowed by common life history traits and ecology amongst 

extinct species (Johnson 2002). 

 

Two broad drivers of extinction have been proposed and extensively debated: late Pleistocene and Holocene 

climatic change, or the arrival of anatomically modern humans (Grayson and Meltzer 2003, Fiedel and Haynes 

2004, Burney and Flannery 2005, Wroe et al. 2006, Wroe and Field 2006, Koch and Barnosky 2006, Ugan and 

Byers 2007, Pushkina and Raia 2008, Nogués-Bravo et al. 2010, Haynes 2013). Despite five decades of research 

and debate (Martin 1966, 1967, Leakey 1966, 1967), the relative importance of these drivers across the globe 

remains contentious (Boulanger and Lyman 2014, Yule et al. 2014, Lima-Ribeiro and Diniz-Filho 2014, Flores 

2014). 

 

To be considered an adequate explanation, any driver must account for the spatial and geographic patterns of 

extinction observed. To evaluate the importance of different drivers we therefore need reliable chronologies of 

megafaunal extinction, human colonisation and climatic change. This has been attempted for small groups of 

species and for single geographic regions, with conclusions from these studies failing to support a universal 

explanation of the extinctions (Brook and Bowman 2004, Burney and Flannery 2005, Koch and Barnosky 

2006). Given that the extinctions are observed across most of the globe, we feel a larger scale analysis is more 

likely to yield conclusions that are robust to uncertainties and idiosyncrasies in the palaeoecological record. 

Such an approach can also highlight the regions where further study would be most constructive. 

 

Reconstructing a global chronology of events is challenging. Extinction and human arrival dates are difficult to 

estimate due to inherent uncertainties in dating techniques and the scarcity of megafaunal and human records 

(Barnosky et al. 2004, Prescott et al. 2012, Stuart 2014). Challenging taphonomic conditions or limited sampling 
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efforts across much of the world mean many megafauna are poorly documented and so subject to large Signor-

Lipps effects (Field et al. 2013), whilst there has been extensive debate on the reliability of last appearance dates 

even for well-represented species, e.g. Coleodonta antiquitatis (Lister and Stuart 2013). Similar problems also 

occur when estimating human arrival dates . To avoid limiting the scope of our study to well researched regions, 

we use an analytical approach that explicitly accounts for these uncertainties in the dating of extinctions and 

human arrival. 

 

It is possible to test the sensitivity of the results by repeating the analysis over a large number of scenarios. We 

can therefore explicitly take the uncertainty into account in the analysis, rather than trying to reconstruct 

unfeasibly precise chronologies. This approach was recently used to investigate the role of colonising dingoes, 

Canis lupus dingo, in Australian extinctions (Prowse et al. 2014), successfully demonstrating that findings were 

robust to uncertainties in the underlying data (Roberts 2014).  Similarly, we used this technique to quantify the 

relative role of climatic and anthropogenic megafaunal extinctions at a global level (Prescott et al. 2012); 

however, the previous analysis  was limited by coarse temporal resolution, restricted geographic coverage and a 

lack of region specific climate proxies (McGlone 2012). 

 

In this study we address prior limitations by using regionally resolved global climate reconstructions and an 

improved database of megafaunal last appearance dates. Crucially, we focus not only on assessing the relative 

importance of the two extinction drivers at a global level, but also on identifying geographic areas where event 

chronologies are poorly understood. This approach is informed by three linked questions: 

 

1. What are the absolute and relative explanatory powers of human colonisation and climatic changes as 

predictors of megafaunal extinction patterns? 

2. How sensitive are these results to uncertainties in human arrival dates and last appearances of 

megafaunal genera? 

3. Where and when do human and climatic factors accurately predict extinction patterns, and in which 

regions do they fail to do so? 
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Materials and Methods 

Mapping Timings of Megafaunal Extinctions 

We compiled a database of last appearance dates of megafaunal genera through a comprehensive literature 

review. We searched for all published records of dated remains or extinction estimates for terrestrial animal 

genera potentially present in the past 80k years and with a maximum mass >=40kg (Appendix 1 Table A1). We 

used genera to avoid complications arising from ambiguity in identifying remains to the species level. We 

mapped last appearance dates and the presence of extant, sufficiently massive genera onto 14 different 

geographic regions (Fig. 1). These regions broadly followed terrestrial biogeographic provinces (Udvardy 1975) 

but were divided into higher resolutions where possible, or used country boundaries where limitations in tracing 

the precise location of dated fossils necessitated. Some islands were excluded due to the unreliability of 

reconstructing climate conditions for very small landmasses. 

 

Published dates of remains vary in reliability, leading some previous studies to employ rigorous selection 

criteria (Roberts et al. 2001, Lister and Stuart 2008). However, considering the rarity of finds for many genera, 

such criteria can limit sample sizes and make inclusion of some regions very difficult. By explicitly accounting 

for uncertainties in dates, we were able to relax our selection criteria and include any published date established 

directly from remains. Where possible, we included the measurement and calibration uncertainties of the quoted 

date, either directly from the calibrated calendar date published, or by including any measurement uncertainty in 

our own calibrations (which were undertaken when dates were only published as uncalibrated). Where no 

directly dated finds were available, we used previously published broad extinction range estimates based on 

alternative indirect analyses (Appendix 1 Table A1). All genera in the database were present before the start of 

our 80k year analysis period (Prescott et al. 2012). 

 

Mapping Human Colonisation 

We consulted published literature for evidence of human arrival in our 14 regions (Turney et al. 2001, 

O’Connell and Allen 2004, Cupper and Duncan 2006, Bulbeck 2007, Goebel et al. 2008, Higham et al. 2011, 

Armitage et al. 2011, Benazzi et al. 2011, Kaifu and Fujita 2012, Gillespie et al. 2012, Bueno et al. 2013, Cooke 

et al. 2013, Dewar et al. 2013, Latorre et al. 2013) and constructed eight representative global colonisation 

scenarios to capture the range of plausible arrival dates (Table 1). Our climate model necessitated 4k year time 

intervals throughout the analysis (see below), so our arrival scenarios use dates rounded to their nearest 4k year 
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interval. The breadth of these time intervals captured most of the variation in plausible arrival dates, with our 

scenarios differing mainly in arrival dates for Sahul and the Americas (Table 1). 

 

Climate Reconstruction 

 

We used a climate reconstruction based on the HadCM3 circulation model driven by changes to orbital 

configuration, atmospheric greenhouse gas concentrations, and ice-sheet extent and sea level, reconstructed 

from a variety of palaeo-archives (Singarayer and Valdes 2010, Eriksson et al. 2012). Climates over the past 80k 

years were reconstructed at a 1o x 1o scale in 2k year snapshots.  For each grid cell, we extracted annual mean 

temperature for the snapshot, averaged for the 4k time interval, and temperature change. Temperature change 

was quantified as the sum of the change during the two 2k year temperature spans between the three snapshots 

(0, 2k, 4k years) in each 4k year interval; summarised as an equation of the form: 

 

 

 

where tx represents one of the three estimates of annual mean temperature in a given interval. This measure of 

change ensures that time intervals with both increases and decreases in temperature over the 4k years would 

have a large temperature change  value, as well as those showing consistent warming or cooling. We then 

obtained region-specific estimates of mean annual temperature and temperature change by taking the mean of 

each across all cells within a region. The temporal resolution of these 2k snapshots, and the 4k time intervals our 

analysis operated at, meant that we did not use simulations which included Heinrich or other millennial-scale 

events. Further, simulations from the HadCM3 model including these events are only available up until the last 

glacial maximum (Singarayer and Valdes 2010) and so would not be consistent across our 80k year analysis 

period. 

 

Modelling Approach 

 

To account for uncertainty in last appearance dates we generated 1000 datasets (“extinction scenarios”) by 

randomly sampling dates from the ranges obtained from the literature. For each extinction scenario we then 

calculated the proportion of genera going extinct in each region in each 4k year time interval, and fitted a 
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generalised non-linear model (GNM) to these data using the ‘gnm’ package in R (Turner and Firth 2007), with a 

quasibinomial error structure to account for overdispersion. As predictors in the models, we used four climatic 

variables and human arrival. Climate variables were those described above during the focal 4k year time interval 

(‘focal climate’) and the previous time interval (‘lagged climate’), allowing for a lag effect of climatic 

conditions. The effect of human arrival was modelled as a function of landmass size using a Ricker function, of 

the form: 

 

 

 

where b/logArea gives the maximum effect of human arrival, whereas the exponential governs the speed at 

which this maximum is reached, and how quickly the effect dissipates. This allows the impact of colonisation to 

range from quickly reaching its maximum and then rapidly decaying, to rising gradually and then also 

dissipating slowly – Fig. 3 shows a representative scenario of this. We would expect the effect of human arrival 

to be faster and stronger in small regions (e.g. islands) compared to a slower and weaker effect in larger 

continents. However, we did not constrain the coefficients, allowing the model to fit all possible effects, 

including human arrival decreasing extinction rates.   

 

For each combination of extinction and arrival scenarios, we fitted a set of 12 GNMs with six combinations of 

predictor variables (Table 2). These included as predictors: no predictors; focal climate only; focal and lagged 

climate; human arrival only; focal climate plus human arrival; focal and lagged climate plus human arrival. All 

models were fitted with either a global intercept (assuming a single background rate of extinction for all 

regions), or an intercept of the form d/logArea (assuming the background absolute extinction rate in each region 

to be a non-linear function of its area). No interaction effects between predictors were accommodated for in the 

models. 

 

For each combination of human arrival and extinction scenarios, we compared models using qAICc (Aikake 

Information Criterion corrected for small sample size and based on quasilikelihood). Models combining climate 

and human arrival were the most informative in all cases, so we quantified the relative explanatory power of 

these two classes of predictors based on Nagelkerke’s R2 (a measure of explained variation accounting for the 

models’ non-Gaussian error structure).  
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Finally, to identify consistency of predictive ability between different geographic regions, we performed a 

leave-one-out cross validation (LOOCV). We excluded each region in turn from the dataset, fitted the best 

performing model to the remaining regions, and used this model to predict extinction chronologies for the 

excluded region. We estimated goodness of fit for the “left out” region as the correlation between its observed 

extinction proportions for each time interval and those predicted from the model fitted for other regions.  

Results 

 

Comparison of Predictors and Robustness to Uncertainty 

 

All models with more than negligible support from qAICc included the effect of human arrival as well as both 

focal and lagged climate, irrespective of the extinction or arrival scenario considered. The best supported models 

(qAICc weights ~0.7) had a global intercept (regions had the same baseline extinction rate); the second best 

supported models (qAICc weights ~0.3) included a region specific intercept affected by the area of a region, 

which behaved mostly as expected, with either higher probabilities of extinction in smaller regions, or with no 

consistent distinguishable effect across extinction scenarios (Appendix 2 Table A3.1 – 3.8). Thus, the roles of 

both climatic and anthropogenic drivers of extinction are strongly supported, even when the uncertainties in the 

data are accounted for. A summary of the variation of model parameter values across scenarios in these two 

models is presented in Appendix 2. 

 

In all models, the effect of human arrival on extinction rates was consistent with our expectations. On islands 

(~62,400 - ~786,000 km2), our models predicted large increases in extinction rates peaking after approximately 

8k years and decaying to very low levels after 16k years. However, on continental landmasses our models 

predicted prolonged periods of elevated extinction rates peaking at 10k – 12k years after arrival and persisting 

beyond 30k years. Fig. 3 shows some representative fits.  

 

Overall, the top-performing models consistently explained a high proportion of the global variation in extinction 

patterns, (Nagelkerke R2 ~75%, Fig. 4). The majority of the models’ explanatory power was uniquely ascribable 

to human arrival, accounting for approximately 60% of the Nagelkerke R2. A smaller proportion (approximately 

25%) was uniquely ascribable to climatic predictors with the remaining proportion (approximately 15%) 



A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

ascribable to either climate or human predictors (Fig 4). These findings were again highly consistent across both 

arrival and extinction scenarios. 

 

Model Performance in Individual Geographic Regions 

 

There was considerable variation between regions in how well models’ predictions matched the observed 

pattern (Fig. 5). In Europe, Tasmania, and to lesser extents Japan and Canada & Alaska, model predictions 

closely matched observed patterns (Fig. 5) across all human arrival and extinction scenarios (Fig. 6). In the 

regions with the shortest, most recent, and most severe extinctions (New Zealand, Madagascar, and parts of the 

Americas) predictions were accurately timed but underestimated observed losses (Fig 5). This observation 

varies little across extinction and arrival scenarios (Fig. 6), even in South America, where uncertainty in last 

appearance dates is highest (Appendix 1 Table A1). In regions with few extinctions, most notably Central Asia 

and Indo-Malaya, the models performed badly and overestimated levels of extinction (Fig. 5) regardless of 

arrival or extinction scenario (Fig. 6). Only mainland Australia and New Guinea, which saw the earliest 

extinction events in the analysis, show peaks of extinction at times not predicted by the model (Fig. 5). These 

are also the only regions where model performance shows a higher degree of sensitivity to human arrival and 

extinction scenarios (Fig. 6). Overall, the LOOCV analysis showed that model performance in any individual 

region is largely unaffected by the exclusion of that region when fitting the model (Fig. 6). 

 

Discussion 

 

The top-performing model identifies a combination of human colonisation, focal and lagged climate as the most 

important predictors of extinctions. Importantly, our models are able to explain the data well (R2~70%), 

capturing most of the worldwide variation in timing and extent of extinctions despite the uncertainties of the 

palaeo-archaeological record. While our previous study (Prescott et al. 2012) had slightly higher explanatory 

power, this was due to a coarser temporal and geographic resolution (10k year time intervals and six geographic 

regions). 

  

The majority of our models’ explanatory power is uniquely attributable to human colonisation, with a large 

minority uniquely attributable to climate. The considerably higher explanatory power of human colonisation 
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supports theories that favour global expansion of anatomically modern humans as the principal driver of 

extinctions, in agreement with previous global analyses (Koch and Barnosky 2006, Prescott et al. 2012, Sandom 

et al. 2014). However our analysis provides evidence that climate was an additional and important contributor to 

the extinction event. 

 

Our analysis is the first of its kind to investigate the megafaunal extinction event using high resolution global 

climate reconstructions. In our view this is crucial to understanding climatic effects, given many of the changes 

of the late Pleistocene. This is demonstrated by those regions where extinctions are well explained by our 

models through temporally separated, sequential impacts of climate changes and human colonisation (Europe, 

Tasmania, Japan, and Canada & Alaska, Fig 5.). A higher temporal resolution also allowed us to identify a 

lagged effect of climate, providing evidence that the full impact of climatic changes on megafauna could take 

several thousand years to be realised. This finding can be of considerable importance to understanding the 

effects of ongoing anthropogenic climate change on extant species. 

 

Whilst our models are generally very good at predicting the timings of extinction episodes, the strength of such 

episodes is underestimated for a few regions in two situations. Firstly, the model does not predict the complete 

megafaunal extinctions that occurred on Madagascar and New Zealand (Fig. 5). It is uncontroversial that human 

colonisation was the critical factor in most of these island extinctions  (Worthy and Holdaway 2002, Crowley 

2010, Allentoft et al. 2014). There are two likely explanations this underestimation: our human impact curve 

might be inappropriate, either for the smallest landmasses or most recent extinctions; or ecological naivety, the 

inability to adapt to introduced novel predators after evolving in isolation and having lost defensive adaptions, 

could be important in determining extinction intensity as is seen on islands in the modern day (Courchamp et al. 

2003). The models’ strong performance on other islands (Japan, Tasmania) supports the naivety explanation, as 

these islands have been far less evolutionarily isolated compared to Madagascar or New Zealand. However 

human arrival occurred much earlier on Japan and Tasmania, and it is possible that subsequent changes in 

human hunting behaviour led to the greater severity of the more recent island extinctions.  

 

The model also under-predicts extinction rates in the North American and South American regions, although 

again correctly captures the timing based both on climate and human arrival.  The higher extinction rates 

observed when human and climatic stressors coincide are evidence that there may have been synergistic effects 
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between the two, a process that is not accounted for by our model. This idea is well supported by ecological 

theory (Boulanger and Lyman 2014), and has previously been suggested as an important factor in accounting for 

megafaunal extinctions (Burney and Flannery 2005, Barnosky and Lindsey 2010, Lorenzen et al. 2011). A 

variety of mechanisms for such synergies have been proposed, including climate mediating human colonisation 

(Eriksson et al. 2012), and climatic stress reducing populations to sizes or ranges that are more vulnerable to 

overexploitation by humans (Lima-Ribeiro et al. 2013). 

 

For a few regions, model performance depends on arrival and extinction scenarios. In Australia, the models 

predict a human-driven extinction peak earlier than is observed for the early arrival scenarios, but performs 

better for later ones. Climatic factors add little predictive power in this region. This could be due to a number of 

factors specific to Australia. Firstly, rainfall rather than temperature may be the most important climatic variable 

driving extinctions in Australia (Kershaw et al. 2003, Pack et al. 2003, Hesse et al. 2004, McGlone 2012, Rule 

et al. 2012). It is also possible that changes in early human culture, such as changing usage of fire, might have 

caused secondary extinction peaks (Webb 2008). This latter explanation could also apply to New Guinea. 

Notably, these are the earliest extinction peaks observed in the analysis and the high level of uncertainty in the 

dataset in these regions and may contribute to the poorer model performance, an explanation which is supported 

by the higher sensitivity of model performance in these regions to the different scenarios. These higher dating 

uncertainties have led some Australian studies to employ rigorous date selection criteria for remains (Roberts et 

al. 2001) and for some Australian dates to come under intense scrutiny (Gillespie et al. 2006, Brook et al. 2007). 

Given the early predicted extinction peak in some of our arrival scenarios for Australia, we repeated the analysis 

using more conservative last appearance dates for Australia from Wroe et al. (2013) (Appendix 3 Table A4). 

Examination of the predicted extinctions (Appendix 3 Fig. A1) and LOOCV analysis (Appendix 3 Fig. A2) 

from this repeated analysis shows the same qualitative results as our original dataset, the only notable difference 

being in the smoother observed extinction peak for Australia (which remains well predicted only for later arrival 

scenarios). The sensitivity of our findings to differences in inclusion criteria for remains is therefore very small. 

 

Only across mainland Asia and Africa does the model perform poorly by predicting higher than observed 

extinction rates, with low levels of observed extinction in Indo-Malaya, Africa and Central Asia. Uniquely, 

‘colonisation’ never occurred in Africa, with some recent studies rejecting the hypothesis of  humans as drivers 

of extinction in Africa (Faith 2014). However, there is evidence for hominin impacts occurring in Africa before 
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the start of our analysis, coinciding with the evolution of earlier hominins (Werdelin and Lewis 2013) and their 

technologies. The lower levels of extinction observed in regions with histories of earlier hominin populations 

(Wells and Stock 2007) may suggest this exposure reduced the impact of final colonisation by anatomically 

modern humans, an idea supported by other global analyses (Sandom et al. 2014). However, this explanation of 

lower Asian extinction rates is speculative, and our models’ performances in these regions could instead reflect 

the uncertainties of megafauna population extents and last appearances across Asia. We suggest that 

concentrated archaeological study showing where and when megafauna lived in these regions should be a 

priority for this field; currently, it is across temperate and tropical Asia that our understanding of these 

extinctions seems to break down. 

 

Our results are highly robust to uncertainty in the palaeological record. Plausible variation in extinction and 

arrival scenarios has little impact on our conclusions on the absolute and relative explanatory power of humans 

or climate. On a regional basis, only parts of Sahul showed moderate sensitivity across different scenarios, 

despite large uncertainties in the datasets of other regions, e.g. South America. No specific regions were shown 

to be unusual in our LOOCV (Fig. 6), demonstrating a degree of consistency in the model’s behaviour across all 

regions. Overall, the high degree of robustness across our results means that the overall conclusion of this 

analysis is unlikely to change qualitatively with improvements in data. Future alterations to specific human 

arrival or megafaunal extinction chronologies, both due to new archaeological finds or new analyses, will have 

little effect on our results and the nature of our conclusions, although they may affect the detailed narrative for 

some regions. 

 

Conclusion 

 

We have demonstrated that robust, quantitative conclusions can be drawn about the causes of the Late 

Pleistocene megafaunal extinctions despite the high degree of uncertainty in the palaeoecological record. Our 

analyses identify human colonisation as the most important factor driving the extinctions on a global scale, but 

that climatic factors were also important. We have explicitly demonstrated the robustness of these results to 

uncertainty over event chronologies. Our analyses successfully explain extinction patterns for large regions of 

the globe, but we have also identified those geographic regions, namely temperate and tropical mainland Asia, 

where our understanding is more limited. We feel that this indicates where future research should be focused. 
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Figure Legends 
Fig. 1. Map depicting the abundance of megafauna (number of genera, given by the size of the pie chart and 

corresponding number label) and proportional extinction (black segments) over the last 80k years for each 

geographic zone. 
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Fig. 2. Support for the 12 different models (given as qAICc weights) predicting extinction probabilities, 
exploring eight different human colonisation scenarios (see Table 1 for details of these scenarios). Box plots 
show the variation across 1000 extinction scenarios generated to account for the uncertainty in the extinction 
dates. 
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Fig. 3. A representative fit of the Ricker curve used to model the intensity of human impact after arrival over 
time for different sized landmasses. Small island represents Tasmania (~62,400 km2), large island Madagascar 
(~587,000 km2), small continental landmass Australia (~7,550,000 km2), and large continental landmass South 
America (~17,840,000 km2). 
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Fig. 4. The relative explanatory power of human arrival and climate variables compared across eight different 
human colonisation scenarios. Variation in extinction probability solely attributed to human arrival in red, solely 
to climate in yellow, and explained by both human arrival and climate in orange. Error bars represent standard 
deviations across 1000 extinction scenarios generated to account for the uncertainty in the extinction dates. 
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Fig. 5. A representative fit of human arrival scenario 1 (global early arrival), comparing models that only 
include climate (green line), only human arrival (blue line), and combining both effects (red line). Time of 
arrival of humans in different geographic zones is marked by a vertical dashed black line and yellow shading of 
the period after arrival (note that Africa is completely shaded, as anatomically modern humans were present 
before 80k years ago)  
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Fig. 6. Leave One Out Cross Validation of model performance across the 14 geographic zones, showing 
goodness of fit to a region of the model generated when that region is left out of model parameterisation (box 
plot) compared to the median of when it is included (red dot). The spread of the box plot represents variation 
across 1000 extinction scenarios generated to account for the uncertainty in the extinction dates. 
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Table Legends 
Table 1. Human arrival scenarios used in the analysis 

  Human Arrival to Region (kyr BP) 

Scenario Description Africa 
New  

Guinea 
Australia Tasmania Indo-Malaya Japan Madagascar 

Canada 
& Alaska 

North  
America 

New  
Zealand 

Europe Siberia 
Central  

Asia 
South  

America 

1 Global Early NA 60-56 60-56 44-40 64-60 24-20 8-4 20-16 20-16 4-0 48-44 48-44 64-60 16-12 

2 Global Late NA 44-40 44-40 44-40 48-44 24-20 8-4 16-12 16-12 4-0 44-40 48-44 48-44 12-8 

3 Aus. Early & 
S.A. Early 

NA 56-52 56-52 44-40 64-60 24-20 8-4 16-12 16-12 4-0 48-44 48-44 64-60 16-12 

4 Aus. Early & 
S.A. Late 

NA 56-52 56-52 44-40 64-60 24-20 8-4 16-12 16-12 4-0 48-44 48-44 64-60 12-8 

5 Aus. Mid. & 
S.A. Early 

NA 52-48 52-48 44-40 64-60 24-20 8-4 16-12 16-12 4-0 48-44 48-44 64-60 16-12 

6 Aus. Mid. & 
S.A. Late 

NA 52-48 52-48 44-40 64-60 24-20 8-4 16-12 16-12 4-0 48-44 48-44 64-60 12-8 

7 Aus. Late & 
S.A. Early 

NA 48-44 48-44 44-40 64-60 24-20 8-4 16-12 16-12 4-0 48-44 48-44 64-60 16-12 

8 Aus. Late & 
S.A. Late 

NA 48-44 48-44 44-40 64-60 24-20 8-4 16-12 16-12 4-0 48-44 48-44 64-60 12-8 
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Table 2. Model combinations compared. 
Model Name Description 

Null No predictors included 

Area Allows for region differences in baseline extinction rates based on size of geographic area 

Climate Only Absolute and change in temperature of the focal time interval 

Climate + Area Absolute and change in temperature of the  focal time interval; region extinction rate differences 

Climate Lagged Absolute and change in temperature in the  focal and previous time interval 

Climate Lagged + Area Absolute and change in temperature in the  focal and previous time interval; region extinction rate differences 

Human Only Human impact after arrival following area-impact curve 

Human + Area Human impact following area-impact curve; region extinction rate differences 

Human + Climate Human impact following area-impact curve; absolute and change in temperature of  focal time interval 

Human + Climate + Area 

Human impact following area-impact curve; absolute and change in temperature of  focal time interval; region 

extinction rate differences 

Human + Climate Lagged 

Human impact following area-impact curve; absolute and change in temperature of  focal and previous time 

interval 

Human + Climate Lagged 

+ Area 

Human impact following area-impact curve; absolute and change in temperature of  focal and previous time 

interval; region extinction rate differences 

 


